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A B S T R A C T

We present Bi-Scale density Plot (BSP), a new technique to enhance density plots by efficiently optimizing the
local density variance in high- and mid-density regions while providing more details in low-density regions.
When visualizing large and dense discrete point samples, scatterplots and thematic maps are often employed
and we need density plots to further provide aggregated views. However, in the density plots, local patterns
such as outliers can be filtered out and meaningful structures such as local density variations can be broken
down. The key innovations in BSP include (i) the unified bin–summarize–decompose–combine framework for
interactively bi-scale enhancing density plots through combining large- and small-scale density variations; and
(ii) the variance-aware filter, which is reformulated based on the edge-preserving image filter, for maintaining
the relative data density while reducing the excessive variability in the density plot. Further, BSP can be
adopted with a 2D colormap, allowing simultaneous exploration of the enhanced structures and recovering the
absolute aggregated densities to improve comparison and lookup tasks. We empirically evaluate our techniques
in a controlled study and present two case studies to demonstrate their effectiveness in exploring large data.
1. Introduction

Scatterplots and thematic maps are among the most effective tech-
niques for visualizing discrete data points in 2D; it is one of the most
fundamental and important visualization techniques. Yet, for large and
dense data, overplotting leads to visual clutter and obscures the data
distribution (Fig. 1(a)). So, another representation can be used: the 2D
density plot (also called density map and heatmap, we use the term density
plot). Instead of visualizing each point separately like a scatterplot or a
thematic map would, a density plot counts the number of points falling
inside a pixel or a small area (called a bin) and visually encodes the
count using intensity.

Density plots fully resolve the overplotting issue by converting a
scatterplot into a density field and presenting the density field via a
colormap. We refer to such density plots as continuous density plots
(CDP). Such density plots can effectively show global patterns (e.g.,
trends and clusters), especially the ones in high-density areas. However,
they often miss local patterns such as outliers in nearly empty areas
(see the red box in Fig. 1(b)) and can hide important visual structures
(called ‘‘structures’’ in the remaining), i.e., meaningful local density
variations (see the blue box in Fig. 1(b)). This is because of the limited
intensity resolution of existing displays and of our vision system; the
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highest density is mapped to the highest (or lowest) visible intensity,
saturating the colormap and compressing the intensity variation of mid-
and low-densities, making them less distinguishable.

A few techniques have attempted to address some of these issues.
Splatterplots (SPP) [1] and Sunspot plots (SSP) [2] show outliers by
overlaying discrete points in sparse regions onto the density plot, but
the high-density regions still saturate the color map. For example, the
road structures enclosed by the blue box on the top right of Figs. 1(c),
1(d) are not clearly visible.

Another common approach to reveal hidden details in density plots
is to use interaction. Continuous zooming [1] allows users to explore
regions of interest in detail, but at the expense of losing the global
context. This issue can be mitigated by computing two density fields:
one with a large kernel to provide an overview and another with a small
kernel to provide a detailed view [3]. Yet, using two separate views
not only consumes more screen space but also increases the cognitive
load, requiring the user to correlate the two views when examining
local structures. Color lens [4] optimizes the colormap by consuming
a small screen area (the lens) and applying the color map globally
(clamped to the display gamut) to augment the density plot, mitigating
the two views problem. However, this technique still requires a long
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Fig. 1. Different methods for visualizing the ‘‘New York TLC Trip’’ data with two million points. (a) The scatterplot suffers from overdrawing; overlapping visual marks obscure
the major structures. (b) A density plot using a Gaussian kernel reveals the global patterns, but the high density in the center (i.e., Manhattan) hides peripheral local structures
in the blue box, while outliers in the red box are missed. (c) The Sunspot plot better preserves the outliers but cannot reveal local density variations; see, e.g., the blue box. (d)
Splatterplots abstract the density variations in high-density regions, hiding local structures, but show point samples in low-density regions; see the red box. (e) Our Bi-Scale density
Plot (BSP) provides more details in low-density regions and reveals more underlying structures; and (f) The BSP enriched by our default 2D colormap, additionally allows looking
up and comparing absolute density values and local density variations.
and tedious interactive exploration of the full visualization in order to
locate interesting patterns.

In this article, we present Bi-Scale density Plots (BSP), a new bi-
scale density plot visualization technique. According to the scatterplot
task taxonomy [5], an effective visualization design must facilitate the
comparison and estimation of numerosity while enabling the identifi-
cation of outliers and local structures. This requires preserving relative
data density and the ability to discern absolute density values while
highlighting outliers and structures, as demonstrated in prior stud-
ies [2,6–8]. Consequently, we design our density plots in terms of the
following four requirements for exploring scatterplots at the overview
level:
DR1: providing an overview that maintains the relative data density in

mid- and high-density regions as much as possible;
DR2: preserving and revealing outliers in low-density regions;
DR3: supporting accurate lookup and comparison of absolute density

values; and
DR4: improving the readability of structures in regions of interest.
DR2 is met in SPP [1] and SSP [2]. DR1 and DR2 are met by the
scatterplot sampling techniques proposed by Chen et al. [6], but not
DR3 and DR4. To the best of our knowledge, these four requirements
have not been met by any density plot technique.

We first propose the bin–summarize–decompose–combine framework,
which outlines the density plot enhancement pipeline and facilitates
the efficient computation of bi-scale density plots for large datasets.
This framework not only illustrates the common components of ex-
isting techniques, such as SPP and SSP, but also elucidates why they
suffer from the ambiguity issue identified by Kindlmann & Scheideg-
ger [9]. This inspires our approach to decomposing the density field
into coarse- and fine-scale layers, thereby better aligning with the
design requirements. Second, we revisit the guided filter [10], an edge-
preserving smoothing filter, and reformulate it as a variance-aware
filter. This adaptation allows for the efficient preservation of structures
in high-variance density regions while effectively reducing noise in low-
variance density regions. Compared to a conventional Gaussian filter,
2 
the variance-aware filter enables a more effective decomposition of the
density field into a base layer that captures the major structures and
dynamics of high-density regions, alongside a detail layer that high-
lights minor structures and outliers in low-density regions. This design
permits users to interactively combine the two layers with a specified
weight, enhancing the readability of structures of interest without
compromising the relative data density. As shown in Fig. 1(e), most
outliers are effectively enhanced while the major structures remain
clearly visible.

As the variance-aware filter inherently changes the absolute in-
tensities of distant regions, it prevents their accurate comparison. We
propose a new 2D colormap for visualizing our density plots: the
original density and the enhanced density are mapped to hue and
lightness, respectively. The structures can then be perceived efficiently
through the lightness channel, while the absolute input densities can
be read and compared across the visualization using the hue channel
(see Fig. 1(f)).

We evaluated our approach in a controlled study in terms of density-
driven analysis tasks and in two case studies. First, we compared
our density plots with the state-of-the-art density visualizations (e.g.,
SPP [1] and SSP [2]). Our method achieves a comparable result in pre-
serving relative densities and outliers while better revealing the local
patterns. Second, we show that interactive improvement by adjusting
weights on the detail layer and the control points of 2D colormaps
enables viewers to flexibly explore structures of interest.

We provide a web-based implementation1 of BSP to demonstrate its
effectiveness. To summarize, our main contributions are as follows:

• We introduce the bin–summarize–decompose–combine framework
for describing density plot visualization pipelines.

• We propose a bi-scale technique to enhance density plots with the
variance-aware filter.

1 https://anonymous-372464.github.io/Filter-basedDensityMapEnhanceme
nt/.
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• We present a new 2D colormap for visualizing density plots that
simultaneously display the enhanced and absolute densities.

• We empirically validate our technique in a controlled study and
present two case studies to demonstrate its effectiveness.

2. Related work

Our method relates to the topics of density-based visualizations and
dge-preserving image enhancement.

2.1. Density visualization

Density visualizations represent a pivotal technique frequently em-
ployed to tackle the issue of overplotting problems in scatterplots.
Below, we discuss the generation, enhancement, interaction, and eval-
ation of density visualizations.

Generation of Density Plots. The generation of density plots in-
cludes two principal strategies: adjusting point opacities and employing
ensity estimation techniques. Adjusting point opacity creates semi-
ransparent visualizations, which can reveal high-density areas. Mate-
ka et al. [11] proposed to set the opacity value based on a user-driven
model. Besides, Micallef et al. [12] advocated for an optimization ap-
proach, considering opacity, mark size, and additional visual attributes
together to align with specific data characteristics and analytical ob-
jectives. However, it is difficult to distinguish varying densities in the
outputted density plots. Instead, density estimation techniques compute
a continuous density field through Kernel Density Estimation [13]
KDE), and the result is often shown as a color-coded plot. For sim-
licity, we term the resulting visualizations Continuous Density Plots
CDP).

As KDE-based techniques are not scalable to large data [14], Wick-
am [15] proposed a bin–summarize–smooth framework for handling

large data while maintaining the data fidelity. Rather than directly
working on the original data, this approach first condenses the original
ata into a set of discrete densities and then applies a Gaussian-like
moothing to obtain a continuous density field. By doing so, the result-
ng density field can clearly show similar global data patterns as the one
esulting from KDE. Recently, Jo et al. [16] extended this approach to
ulti-class density maps and provide a declarative rendering model.

However, the smoothing step might reduce the local variability, so
some important structures could be missed (see Fig. 1(b)). In this work,
we revisit this framework and extend it to better account for the major
structures and density variations and also to allow for interactively
choosing detailed vs. smoothed results.

Enhancement of Density Plots. Traditional continuous density plots
have some problems, for example, they often fail to depict local varia-
tions and outliers. SPP [1] introduces an approach to preserve outliers.
In sparse regions, it displays data points through sub-sampling, while
in dense regions, it uses closed smooth contours. However, as SPP is
developed for multi-class scatterplots, it mistakenly assigns the same
color to some regions, leading to ambiguity in understanding densities
(see the red and blue boxes in Fig. 1(d)).

SSP [2] generates two density fields by applying KDE with distinct
kernel types to the input data. Following the computation, it renders
hese density fields using varied colormaps and then combines them

adaptively. This process leverages shading and shape cues to preserve
the relative differences. The honeycomb plots [8] further enhance the
visualization by improving the shading to show outliers more clearly.

owever, Both methods still face challenges in effectively conveying
ocal density variations (see the blue box in Fig. 1(c)) and have the

ambiguity problem as SPP (see the pink areas in Fig. 1(c) in the two
boxes).

Recent studies have explored density plot techniques tailored to
specific fields. Feng et al. [17] introduced the topology density map,
3 
Table 1
Comparing our bi-scale density plots with prior techniques on the four design require-

ents (see Section 1), where ✓ and × indicate whether the technique accounts for a
iven requirement or not.

DR1 DR2 DR3 DR4

CDP ✓ × × ×
SPP [1] × ✓ × ×
SSP [2] ✓ ✓ × ×
BSP ✓ ✓ ✓ ✓

enhancing density visualization by incorporating road network topol-
ogy and traffic conditions. This approach improves clarity and precision
in dense urban environments, providing more intuitive insights for
urban analysis. Similarly, Xue et al. [18] developed line-based density
plots that employ color schemes to represent data density and highlight
similar regions, facilitating the identification of trends and patterns.
However, the specific focus of these methods limits their versatility,
restricting their use as general solutions across diverse applications.

Our bi-scale density plots (BSP) address this problem in three as-
pects: (i) introducing a new pipeline for computing density fields in a
bi-scale way; (ii) reformulating the classic edge-preserving image filter,
the guided filter, as variance-aware filter to satisfy DR1 and DR2; and
(iii) the 2D colormap design for showing absolute (input) densities
nd filter densities simultaneously. With this new pipeline, users can
nteractively combine the coarse- and fine-scale density fields to explore
etails of interest. Table 1 summarizes the difference among these

variants of density plots along the four design requirements (DR1-DR4).

Interaction of Density Plots. A large kernel typically leads to smooth
isualizations but might lose some local variations, and vice versa for

a small kernel. So, interaction mechanisms are often used to mitigate
this issue. Willems et al. [3] provided overview and detail by simul-
taneously visualizing two density fields with kernels of different sizes.
Mayorga and Gleicher [1] introduced continuous zooming for smoothly
evealing abstracted details, where details emerge as zooming occurs.
taib et al. [19] devised a focus+context technique that explicitly

encodes out-of-focus distance based on the depth of field. Our approach
provides a new perspective for enhancing details in density fields,
supporting magnifying regions of interest; see Section 4.2.

Evaluation of Density Plots. Trautner et al. [2] compared five dis-
tinct visual designs with two tasks: density estimation and density
comparison. Their findings revealed that SPP is comparably effective
to the KDE-based continuous density plots. Besides, Sarikaya and Gle-
icher [5] outlined a collection of tasks unique to scatterplots and
assessed the efficiency of scatterplots, contour plots, and SPP in sup-
porting aggregation-level tasks. In this work, we further expand the
valuation method to support our research.

2.2. Edge-preserving image enhancement

Image smoothing is a fundamental operation in image processing
nd computer vision. It aims to remove noise from the image while pre-
erving the major structures. The widely-used Gaussian filter computes
 weighted sum of pixel values in a local neighborhood. However, since
t has non-zero weights for all pixels, even when they are irrelevant
nd far from the neighborhood center, over-smoothing and edge detail

loss often occur. Hence, various edge-preserving image filters [20] have
been proposed to preserve the high-contrast edges while removing the
small-contrast ones. In this work, we adopt the guided filter [10], a
simple and popular filter, which can effectively achieve good edge-
preserving smoothing like some other filters, such as the bilateral filter,
yet almost avoiding the ‘‘gradient reversal’’ artifacts near the edges. By
considering a discrete density field as an image, we reformulate the
guided filter to be density variance-aware, aiming at reducing the noise
in the density field and maintaining the relative data density.
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Fig. 2. Illustrating our unified bin–summarize–transform–decompose–combine framework, where the bin–summarize stage first produces the density field 𝐹 . Then, we can choose
o map 𝐹 to a new density field 𝐼 by a global transformation or not. After that, we decompose the result into base layer 𝐵 and detail layer 𝐷, together with the associated
endering results 𝑉 𝑏 and 𝑉 𝑑 , respectively. Finally, 𝑉 𝑏 and 𝑉 𝑑 are combined to yield the final plot 𝑉 . The black arrows indicate the common paths for all methods, whereas the
olored arrows indicate technique-specific paths.
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To enhance image details, Durand and Dorsey [21] proposed to
decompose an image into two fields: a base layer (edge-preserving
smoothing result) and a detail layer (difference between the input
image and smoothing result). Combining the detail layer with a large
weight on the base layer can emphasize the details while preserving
the large-scale features in the result. We show that this bi-scale de-
composition can help facilitate the exploration of details in the density
field.

3. Bin–summarize–transform–decompose–combine framework

In this section, we introduce our bin–summarize–decompose–
ombine framework for generating enhanced density plots from large
nd dense bivariate data. We then formulate SPP [1], SSP [2], and our
roposed Bi-Scale Density-Plot (BSP) under this framework. Also, we
resent our variance-aware filter and explain how it better character-
zes structures.

Building upon the bin–summarize–smooth approach of Wickham
[15], our framework consists of the following three stages:

Bin–summarize We bin and summarize the data into a 2D density
field 𝐹 , in which each value denotes the density in an associated
discrete bin. To improve the contrast in low-density regions, 𝐹
can undergo optional preprocessing, e.g., logarithm transforms,
or intensity histogram equalization.

Decompose From the discrete density field 𝐹 , we generate the base
(𝐵) and detail (𝐷) fields, called layers, that capture the coarse-
and fine-scale density variations, respectively. Wickham’s ap-
proach only creates one base layer at this stage, that undergoes a
smooth filter. Other methods use image processing techniques to
create and separate the fields, sometimes improving or filtering
each field separately.

Combine We further combine the processed detail layer 𝐷 and the
base layer 𝐵 to produce the final density plot. The combination
is not limited to alpha blending the two layers; our BSP method
provides a more sophisticated operation.

To visualize a bivariate dataset, the first step produces a density
ield 𝐹 : 𝑅2 → 𝑅 in screen space, where 𝐹𝑖 is the number of data

samples in bin 𝑖 on the screen. To explore how the generated density
lot supports DR1 and DR2, we define the relative data density [22]
etween two regions having the same area 𝛺𝑖 and 𝛺𝑗 as 1 if ∑𝑘∈𝛺𝑖

𝐹𝑘 >
𝑘∈𝛺𝑗

𝐹𝑘, as −1 if ∑

𝑘∈𝛺𝑖
𝐹𝑘 <

∑

𝑘∈𝛺𝑗
𝐹𝑘, and as 0 otherwise. As

here is no clear definition of outliers, we follow SPP to treat data
oints in low-density regions as outliers, but we do not set a specific
ensity threshold. To reduce the colormap influence on the perception
f density plots, we follow Trautner et al. [2] that use the percep-
ually uniform colormaps [23]: Plasma and gray for illustration and
valuation, respectively.

3.1. Revisit existing density plots

Below, we show that we can re-write the existing enhanced density
lots techniques under our bin–summarize–decompose–combine frame-

work. They all rely on computing a KDE, that we perform in image
space. Wickham [15] explains that calculating the KDE of a density
4 
field in data space produces results similar to calculating it in image
space with a complexity 𝑂(𝑛) (𝑛 the number of data points) for the
former and 𝑂(1) (a constant that depends on the image resolution) for
the latter.

Splatterplots. Like traditional density plots, SPP first computes a
continuous density field 𝐵 by smoothing 𝐹 using a kernel function
𝐾:

𝐵𝑖 =
1

∑

𝑗∈𝛺 𝐾(𝑥𝑖 − 𝑥𝑗 )

∑

𝑗∈𝛺
𝐾(𝑥𝑖 − 𝑥𝑗 )𝐹𝑖, (1)

where 𝑥𝑖 is the coordinate of bin 𝑖 and 𝛺 is the whole density field. By
default, 𝐾 is a Gaussian function:

𝐾(𝑑) = 1
√

2𝜋 𝜎
𝑒𝑥𝑝(− 𝑑2

2𝜎2
), (2)

where 𝐾(𝑑) depends on distance 𝑑 = |𝑥𝑖 − 𝑥𝑗 | and 𝜎 is the kernel
andwidth. The larger 𝜎, the smoother the density field 𝐵.

To reduce the visual complexity of the continuous density plot, SPP
decomposes the density field 𝐵 to obtain a detail field 𝐷:

𝐷𝑖 =
{

𝐵𝑖 if 𝐵𝑖 ≤ 𝜆
0 otherwise,

where 𝜆 is a threshold. Next, we generate the base layer by assigning
 constant color to the bins with density larger than 𝜆:

𝑉 𝑏
𝑖 =

{

𝑐 if 𝜆 ≤ 𝐵𝑖
𝑀(𝐵𝑖) otherwise,

where 𝑀 is a 1D color mapping function from density to color; and
𝑐 is the foreground color. Then, the contours that enclose all pixels
of color 𝑐 are computed and overlaid onto the density visualization
𝑉 𝑏. The detail visualization 𝑉 𝑑 is constructed with a set of data points
subsampled from the detail field 𝐷; see, e.g., Fig. 1(d).

Finally, the Combine stage performs alpha blending:

𝑉 = 𝛼 𝑉 𝑏 + (1 − 𝛼)𝑉 𝑑 (3)

where 𝛼 ∈ [0, 1] is a constant value. In doing so, the resulting plot 𝑉
contains three kinds of visual primitives: color-coded densities, discrete
isolated points, and polygons filled with a constant color.

Sunspot Plots. SSP can also be formulated under the same framework.
We can generate the base field 𝐵 by applying a Gaussian kernel to 𝐹 ,
nd then the detail field 𝐷 by applying a discrete kernel to 𝐹 . Then,
hey are transformed into images 𝑉 𝑏 and 𝑉 𝑑 :

𝑉 𝑏 = 𝑀𝑏(𝐵), 𝑉 𝑑 = 𝑀𝑑 (𝐷), (4)

where 𝑀𝑏 and 𝑀𝑑 are color mapping functions, which can be the same,
lthough the value ranges of 𝐵 and 𝐷 are usually different. Finally, 𝑉 𝑏

and 𝑉 𝑑 are combined through alpha blending, but the opacity of each
ixel 𝑖 is proportional to the smoothed density value 𝐵𝑖.

Fig. 2 illustrates the process of constructing these two plots under
he bin–summarize–decompose–combine framework. We can see that
hey both might suffer from ambiguity [9] since similar pixel colors in

the two layers might actually correspond to different density values,
ee Figs. 1(c), 1(d). Although this issue can be alleviated by using

non-intersecting colormaps, their combination might lead to misleading
colors in the overlapping regions due to alpha blending.
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Fig. 3. The bi-scale density-plot enhancement approach, applied to two pipelines, a Gaussian filter on top and our variance-aware filter on the bottom. First, we bin–summarize
the input data and generate the density field 𝐼 via a logarithmic transform. Then, we decompose 𝐼 into the base and detail layers, using our variance-aware filter (bottom path).
Finally, we magnify the detail layer and incorporate it into the base layer to produce the bi-scale density plot (BSP) to better reveal the outliers (see the ones in the red box).
3.2. Bi-scale density plot enhancement

Fig. 3 illustrates the pipeline of our method, corresponding to
the three steps in Fig. 2(c). First, we transform the bin–summarized
density field 𝐹 to the logarithm domain to expand the low-density and
compress high-density range. Next, we decompose it into the base and
detail fields (𝐵&𝐷). Finally, we weight the detail field (𝜔𝐷) to enhance
local details, combine it with the base field, and colorize the combined
result (𝐼 ′) using a colormap. These steps are formulated as follows:

𝐼 = log(𝐹 + 1),
𝐵 = 𝐾(𝐼), 𝐷 = 𝐼 − 𝐵 ,
𝐼 ′ = 𝐵 + 𝜔𝐷 , 𝑉 = 𝑀(𝐼 ′), (5)

where 𝐾 is the filter function, 𝜔 is a weight, and 𝑀 is a 1D colormap.
Note that 𝐵 and 𝐷 in Fig. 3 are encoded using different colormaps in the
illustration. Using a proper default 𝜔, the fine-scale structures captured
by 𝐷 can help enhance the details in the final density plot 𝑉 , which is
referred to as a bi-scale density plot, or BSP. By interactively adjusting
𝜔, users can control the relative importance of the local details.

Using the Gaussian kernel (see Eq. (2)) as the filter, however,
might over-enhance some major structures, leading to breaking DR1.
For example, the Gaussian smoothed 𝐵 loses the salient edges in 𝐼 ,
and these edges are extracted to the detail layer 𝐷 (see the blue box
at the top of Fig. 3(c)). Thereby, enhancing the detail with Eq. (5)
overly magnifies the red edges and violates the relative data densities.
Obviously, the maximal data density in the green box is larger than that
in the blue box in 𝐹 (see Fig. 3(a)), but it becomes smaller at the top
of Fig. 3(d). In the following, we show how our density variance-aware
filter could help address this problem.

3.2.1. Reformulated guided filter: Variance-aware filter
The original guided filter [10] was designed to smooth out noises in

natural images while preserving edges, without suffering from gradient
reversal artifacts. Aiming at preserving the relative densities (DR1)
and enhancing outliers (DR2) in the final density plots, we propose
to reformulate the guided filter in terms of density variance. With the
5 
reformulation, we can show that our variance-aware filter can better
maintain the relative data densities in high-density variance areas,
while reducing excessive variability in low-variance areas.

After obtaining the log-transformed density field 𝐼 , we construct
overlapping tiles of size ℎ × ℎ over the field, so each bin (pixel) in 𝐼 is
covered by at most ℎ2 tiles. Assuming that there is a local linear model
between 𝐼 and the smoothed field 𝐵, we can express 𝐵𝑖 as a linear
transform of the pixels 𝐼𝑖 contained in the tile 𝛺𝑘 centered at bin 𝑘:

𝐵𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘,∀𝑖 ∈ 𝛺𝑘, (6)

where 𝑖 is a bin index and (𝑎𝑘, 𝑏𝑘) are the linear coefficients of tile
𝛺𝑘. By finding a best-fit linear relation between the 𝐼 and the 𝐷, this
model has proven to be useful in removing excessive variability [24].
However, improperly choosing (𝑎𝑘, 𝑏𝑘) removes major structures, in a
way similar to a Gaussian filter. To avoid this issue, one can constrain
the filtered result to be as close as possible to the input density field.

To that end, the linear coefficients (𝑎𝑘, 𝑏𝑘) can be determined by
minimizing the difference between the smoothed 𝐵 and input 𝐼 :

𝐸(𝑎𝑘, 𝑏𝑘) =
∑

𝑖∈𝛺𝑘

(

(𝑎𝑘𝐼𝑖 + 𝑏𝑘 − 𝐼𝑖)2 + 𝜏 𝑎2𝑘
)

, (7)

where 𝜏 is a regularization parameter penalizing large 𝑎𝑘. Setting the
derivative of 𝐸(𝑎𝑘, 𝑏𝑘) with respect to 𝑎𝑘 and 𝑏𝑘 to zero yields the
following solution:

𝑎𝑘 =
𝜎2𝑘

𝜎2𝑘 + 𝜏
, 𝑏𝑘 = (1 − 𝑎𝑘)𝜇𝑘, (8)

where 𝜇𝑘 and 𝜎2𝑘 are the mean and variance of 𝐼 in 𝛺𝑘. Since 𝜏 is a
positive number, 𝑎𝑘 and 𝑏𝑘 have ranges [0, 1) and (0, 𝜇𝑘], respectively.
Substituting Eq. (8) into Eq. (6), we obtain

𝐵𝑖 = 𝜇𝑘 + (𝐼𝑖 − 𝜇𝑘)𝑎𝑘 = 𝜇𝑘 + (𝐼𝑖 − 𝜇𝑘)
𝜎2𝑘

𝜎2𝑘 + 𝜏
. (9)

For a tile 𝛺𝑘 with high-density variance (𝜎2𝑘 ≫ 𝜏), we have 𝑎𝑘 ≈ 1,
𝑏𝑘 ≈ 0, and 𝐵𝑖 ≈ 𝐼𝑖; and for 𝛺𝑘 with low-density variance (𝜎2𝑘 ≪ 𝜏),
𝑎𝑘 ≈ 0, 𝑏𝑘 ≈ 𝜇𝑘, and 𝐵𝑖 ≈ 𝜇𝑘. In other words, for areas with a high-
density variance, the density values are preserved, whereas for areas
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Fig. 4. The scatterplots visualize the mean density (𝜇) and density variance (𝜎2) of points representing the bins 𝑘 of a lower-resolution grid over 𝐼 in Fig. 3. Their color encodes
the density difference 𝐷 = 𝐼 − 𝐵 in Fig. 3(c) for the Gaussian filter (a) and the variance-aware filter (b). Most points in (a) have large differences (more red/blue), while our
method limits this difference; points with large differences in (b) occur mainly in the areas with low mean values and low variances.
with a small-density variance, the density values are moved mostly
around the mean. Though the low-variance areas are smoothed, their
density change is also small due to the small variance. So, the relative
data densities can be largely preserved.

As bin 𝑖 is contained in multiple overlapping tiles, 𝐵𝑖 in Eq. (6) may
have different values when computed in different tiles. This problem
can be circumvented by averaging all possible 𝑎𝑘𝐼𝑖 + 𝑏𝑘 for all tiles 𝛺𝑘
that cover 𝑖. By symmetry of the tile, all centers 𝑘 of 𝛺𝑘 covering 𝑖 are
covered by 𝛺𝑖, so Eq. (6) can be re-written as

�̄�𝑖 =
1

|ℎ2|

∑

𝑘∈𝛺𝑖

𝑎𝑘, �̄�𝑖 =
1

|ℎ2|

∑

𝑘∈𝛺𝑖

𝑏𝑘, 𝐵𝑖 = �̄�𝑖𝐼𝑖 + �̄�𝑖.

To learn how the variance-aware filter preserves the density variance,
we compute the detail field 𝐷, and then study how 𝐷 is related to 𝜇𝑘
and 𝜎2𝑘 of 𝐼 . As shown in Fig. 4(b), our variance-aware filter mainly
alters low-density, low-variance regions, while the Gaussian filter alters
the density field regardless of the density variance, smoothing high-
variance regions largely (see red and blue points in Fig. 4(a)). Such
smoothing causes edge loss, as highlighted by the blue box at the
top of Fig. 3(b). Due to such differences, our filter model can better
preserve the density variance. For example, the density variances in the
blue and green boxes at the top of Fig. 3(a) are changed from (5.58,
1.84) to (4.55, 1.69) and (5.35, 1.73) by the Gaussian filter and the
variance-aware filter, respectively.

Parameters ℎ and 𝜏. Tile height ℎ determines the region size, whereas
𝜏 determines if a tile region is low- or high-variance. Fig. 5 shows their
influence on the filtered result: a larger 𝜏 smooths out more details and
ℎ does not significantly impact the filtering results. This is reasonable,
since a large 𝜏 means more regions are smoothed, while our filter model
maintains the density variations regardless of the tile size. Empirically,
we set ℎ = 20 and 𝜏 = 0.16, which work well for most scatterplots
because the density of bins containing outliers is usually 1 and the
corresponding tile is nearly empty (𝜇𝑘 ≈ 0). According to Eq. (5),
density variances of outlier bins are (log(2) − log(1))2 ≈ 0.09 ≪ 0.16,
while the ones of other bins are not less than (log(3) − log(1))2 ≈ 0.23 >
0.16. To treat points in bins with higher density as outliers, users can
increase the value of 𝜏 accordingly.

3.2.2. Detail enhancement
Following Eq. (5), we can obtain the bi-scale density plots to meet

DR2 by combining the base layer 𝐵 and the weighted detail layer 𝐷. A
large weight 𝜔 helps to more clearly show the outliers in low-density
regions but may dim the major structures captured by the base layer.
6 
Fig. 5. Effect of parameters ℎ and 𝜏 on the filtered result 𝐵. A large 𝜏 results in
over-smoothing and a small 𝜏 cannot effectively reduce variability, whereas ℎ has little
impact on the results.

By default, we use 𝜔 = 3 for all tested data in our experiments. Since
some 𝐷𝑖 are negative, the resulting 𝐼 ′ might be negative, which is
meaningless for a density plot. To remedy this issue, we set 𝐼 ′ to zero
when 𝐼 ′ < 0.

Fig. 3(d) compares the results after detail enhancement between
the Gaussian filter and the variance-aware filter. Both filters perform
similarly for low-density regions (see the red boxes) where the variance
is small. Yet, they have very different behaviors for the other regions,
where the Gaussian filter overly smooths out the details but our filter
model almost preserves the intensity. Accordingly, their resulting detail
layers shown in Fig. 3(c) have different value ranges: [−2.01, 1.56]
(Gaussian) vs. [−0.28, 1.05] (variance-aware). Boosting the detail layer
with weight 𝜔 = 3, both density plots highlight the details in Fig. 3(d)
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Fig. 6. (a) Our default 2D colormap with the absolute values of the input density field
and the ones of the enhanced field encoded by hue on the 𝑥-axis and luminance on the
𝑦-axis and its resulting colorized density plot of a synthetic dataset displayed shown
in (b). (c) The colormap changed by moving more hues to the low-density ranges and
(d) its resulting density plot better reveals two inner green clusters.

but the one with the Gaussian filter undesirably changes the relative
data density. For example, the highest density of the green box at the
top of Fig. 3(a) is (7.28), which is greater than that of the blue box
(6.88). Yet, their order is reversed by the Gaussian filter at the top
of Fig. 3(d) (7.71 < 8.65), whereas the relative data density between
them is preserved by our filter model (7.74 > 7.14) at the bottom of
Fig. 3(d). The reason is that the differences within these highest-density
bins yielded by our model are close to zero, avoiding falsely changing
the relative data density when boosting 𝐷. Also, since 𝑎𝑘 is always less
than one, the gradient of the detail layer has the same direction as the
input density field:

𝜕𝑥𝐵 = 𝑎𝑘𝜕𝑥𝐼 ,
𝜕𝑥𝐷 = 𝜕𝑥𝐼 − 𝜕𝑥𝐵 = (1 − 𝑎𝑘)𝜕𝑥𝐼 .
This ensures our filter model does not suffer from the gradient reversal
artifacts, thereby better preserving the local relative densities. When 𝑎𝑘
and 𝑏𝑘 are replaced by the averaged coefficients �̄�𝑖 and �̄�𝑖, we obtain
𝜕𝑥𝐷 ≈ (1 − �̄�𝑖)𝜕𝑥𝐼 and thus the above observation still holds.

3.3. Bivariate colormaps

With the detail enhancement, BSP meets DR1, DR2, and DR4.
Yet, this process is not a perfect linear map from densities to screen
intensities, thus preventing direct estimation of absolute densities from
the plots. Hence, instead of using a 1D colormap, we propose a new
bivariate color mapping strategy employing the perceptually uniform
CIELCh color space [25].

In our method, we use the bivariate colormap to simultaneously en-
code the intensities of the input and output density plots. As Figs. 6(a),
6(c) show, the density values of 𝐹 is mapped to the 𝑥 axis encoded
with the hue channel, and 𝐼 ′ is mapped to the 𝑦 axis encoded with
the luminance channel. Also, to avoid the dark and white regions of
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the color space [26], where hues cannot be distinguished, we follow
the Munsell sample book [27] to consider the luminance range only
above the value of 24, and linearly map the density range in 𝐼 ′ to this
range in the 𝑦-axis. For the density range in 𝐹 , we map it to the whole
hue range on the 𝑥-axis and set the chroma channel in the CIELCh
space as a constant value of 100 as the default. Fig. 6(a) shows the 2D
colormap, where different hues represent different density value ranges
(e.g., green for values between 50 and 100). Using this colormap, the
density plot of the synthetic dataset shown in Fig. 6(b) facilitates users
to better estimate the absolute density values and compare them to
distant regions. For instance, the cluster in green on the bottom right
is significantly denser than the large cluster on its upper left, while
the top-right cluster has low-density values but its structure is clearly
revealed.

By specifying different hue values to different control points on the
𝑥-axis, users are allowed to interactively add, delete, or move key points
to construct a new colormap to show different densities of interest.
An example is shown in Figs. 6(c), 6(d), where more control points
are moved to the range [0,50] for exploring low-density clusters. From
Fig. 6(d), we can see an inner green cluster within each of two large
red clusters.

4. Evaluation

We implement a web-based interactive prototype using JavaScript
and OpenCV.js [28]. Owing to the efficiency of our bin–summarize–
decompose–combine framework, this prototype can generate BSPs for
data with millions of point samples in less than 200 ms on a PC with
an Intel Core i5-4590 3.3 GHz CPU and 24 GB memory, whereas SPP
and SSP both require GPUs to achieve similar speeds because their
implementations provided by the original authors directly deal with
point samples in the data space rather than a bin–summarized density
field. Besides supporting interactive parameter adjustment (combina-
tion weight 𝜔, tile height ℎ, and regularization parameter 𝜏), it provides
two interactions: (i) brush a region and assign a different weight 𝜔
to enhance/lower the importance of the structures, and (ii) specify
different hue to control points in the 2D colormap (see Fig. 6(c)).

To demonstrate the effectiveness of our approach, we conducted
a controlled study to compare BSP with state-of-the-art density plot
visualizations and performed two case studies for interactively ex-
ploring two real-world datasets. For all tested data, we compute the
density plots with the resolution 256 × 256. The full evaluation results,
including screenshots, the website, and the analysis code, can be found
in the supplemental material.

4.1. Controlled study

Density plots inherently support two categories of abstract analysis
tasks [5] related to scatterplots: open-ended browsing and aggrega-
tion judgments. We evaluate the effectiveness of BSP by choosing
representative abstract tasks from each category to design our exper-
imental tasks. Based on them, we created five concrete experimental
tasks: density comparison, density estimation, find maximum, count outliers,
and search for pattern; they correspond to two aggregate-level tasks
(numerosity comparison/estimation and identify anomalies) and two
browsing tasks (explore data and search for a known motif) as listed
in Fig. 8(a). These tasks are also well aligned with the four design
requirements (see Section 1), so the experimental results also indicate
how BSPs meet these requirements.

Density Plot Techniques. We compared our two BSP techniques with
three existing density-plot techniques as baselines: CDP, SPP, and SSP.
We include two versions of SSP in our experiment. SSP can use the
same colormap for both layers, referred to as SSP-s, or two different
colormaps, referred to as SSP-d.

Based on our framework, each version of BSP is determined by two
factors: filters (Gaussian filter or variance-aware filter) and colormaps
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Fig. 7. Illustration of the five tasks and the corresponding questions we asked the participants. Images are generated by using our BSP-VF-1D method on the synthesized dataset,
where the red boxes and the blue box are contained in the stimuli, and the green box in (c) and green point in (e) are the participants’ input.
(1D or 2D colormaps). Hence, we include four versions: BSP with
Gaussian filter and 1D colormaps (BSP-GS-1D) and BSP with Gaussian
filter and 2D colormaps (BSP-GS-2D), BSP with variance-aware filter
and 1D colormaps (BSP-VF-1D), and BSP with variance-aware filter
and 2D colormaps (BSP-VF-2D). To reduce the color influence on the
perception, we render the density fields with a gray colormap for all
density plots except SSP-d, BSP-GS-2D, and BSP-VF-2D.

For SPP and SSP, we use the default parameters provided by the
implementations of the original authors. For a fair comparison, we set
the same bandwidth 𝜎 = 2 for methods involved in the Gaussian kernel
(CDP, BSP-GS-1D, BSP-GS-2D), ℎ = 20, 𝜏 = 0.16 for methods involved
in the variance-aware filter (BSP-VF-1D, BSP-VF-2D), and 𝜔 = 3 for all
BSP methods.

To summarize, we compare 8 techniques: CDP, SPP-s, SPP-d, SSP,
BSP-GS-1D, BSP-GS-2D, BSP-VF-1D, and BSP-VF-2D.

Tasks & Measures. Our five analysis tasks are:
1. Density comparison: Following the methodology of Trautner et al.

[2], we highlighted three regions (A, B, C) using a 50 × 50 px red
boxes (see Fig. 7(a)) and asked participants to choose one region
with the highest density. Each question offers three possible
answers (A, B, or C), and only one answer is right. We defined
the error measure as 0 if the participant’s response was correct
and 1 otherwise.

2. Density estimation: Following the methodology of Trautner et al.
[2], we highlighted one region using a 50 × 50 px red box (see
Fig. 7(b)) and asked participants to estimate the density ratio to
the densest region on a range between 0 and 1, with the value
of 0 corresponding to the region with the lowest-density and 1
to the highest. Note that we refined this task by showing the
highest-density region in blue after the pilot study. The error was
computed as the absolute difference between the participant’s
answer and the actual density ratio of the highlighted region to
the highest-density region.

3. Find maximum: We highlighted a region using a 250 × 250 px
red box, and asked participants to find a small region within it
with the highest density, marked by a 25 × 25 px green box (see
Fig. 7(c)). The error was computed as the difference between the
density value in the selected position and the actual maximum
in the highlighted region, normalized to [0, 1] by dividing the
density difference by the maximum density.

4. Count outliers: We highlighted a sparse region using a 50 × 50 px
red box (see Fig. 7(d)) and asked participants to count the points
within it. The error was computed as the absolute difference
between the participant’s answer and the actual number of
points.

5. Search for pattern: We embedded a letter ‘‘A’’ into the dataset by
adopting a spatial-domain watermarking technique [29]. Specif-
ically, we compute the mean density within the bounding box
of the given letter, then add one-quarter of the mean density to
the densities of the letter related foreground pixels, and finally
encode the modified density field with the gray colormap. Given
such density plots, we asked the participants to find the position
of the watermark in the density plot (see Fig. 7(e)). The error
was evaluated as binary: 0, if the selected position fell within
the bounding box of the watermark, and 1, otherwise.
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As shown in Fig. 8(a), the first and third tasks are related to numerosity
comparison and the second is about numerosity estimation. Unlike the
task of density comparison that only gives a judgment of relative density
among three regions, density estimation requires the estimation of the
absolute density values, and find maximum further involves estimating
the density of all small areas within the given large area. The other two
tasks correspond to the abstract analysis tasks of identify anomalies and
search for known motif, respectively. Fig. 7 shows a sample screenshot
for each task with the size of 900 × 600 pixels, which ensures that each
individual point can be seen clearly.

Datasets. We collected four datasets with varying density distributions,
including two synthetic datasets and two real-world datasets. The first
synthetic dataset with 255,147 points is generated by mixing four
Gaussian clusters with the maximal densities varying from [14, 198],
while the other consists of only one large, sparse cluster with 2001
records collected from Abbas et al. [30]. The two real-world datasets
are the 2014 Boston Marathon dataset [31] with 31,945 records and
the Person Activity dataset [32] with 98,568 records. For each dataset
and each task, we created two stimuli with different randomly-selected
regions highlighted. As a result, we have a total of

5 tasks × 8 techniques × 4 datasets × 2 stimuli = 320 trials.

Hypotheses. We expect our approaches to outperform the state-of-
the-art methods in revealing underlying structures while maintaining
relative data density and outliers. Trautner et al. [2] show that SSP
performs similarly to CDP on density estimation tasks, and we expect
that our BSP-VF-2D performs even better than them due to the bivariate
colormaps. Hence, we had the following hypotheses:
H1: BSP-VF-* are comparable to CDP and SSP-d in the density compar-

ison task, and perform better than SSP-s and SPP.
H2: BSP-*-2D outperform the other methods in the density estimation

task.
H3: BSP-VF-* outperform the other methods in the find maximum task.
H4: BSP-* are comparable to SSP and perform better than SPP and

CDP in the count outliers task.
H5: BSP-VF-* perform the best, followed by BSP-GS-*, and the others

have the worst performance in the search for pattern task.
Apparatus. The study was conducted on a quad-core PC with a 27’’
LCD widescreen with a mouse and a keyboard as the input and a
3840 × 2160 pixel monitor with 163 PPI as the output, which was
calibrated for faithful color reproduction. All participants were seated
at ∼60 cm from the display in a nearly constantly-illuminated room.

Pilot Study. We conducted a pilot study with eight participants from
our laboratory to try out our experimental design. Before the study,
we explained the tasks to the participants and instructed participants
to use our 1D and 2D colormaps to estimate density values. Then, we
only used one synthetic dataset, so each participant had to complete
5 × 8 × 2 = 80 trials, taking around 15 min. We performed a follow-up
interview with each participant and asked them if there was any design
factor that limited their efficiency and accuracy in completing the task
and if they had any suggestions for improving the study.

The answers hinted at one major factor that influenced the results:
a strong learning effect. The learning effect was caused by two different
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Fig. 8. The experimental tasks and results of each task in our controlled study. (a) The table shows how five experimental tasks correspond to the abstract tasks and design
requirements. (b-f) The results of the controlled study, where we show the confidence interval plots and statistical tables for the tasks. Error bars represent 95% confidence
intervals. Each table shows the statistical test results of our experimental methods, showing the mean with 95% confidence interval and 𝑝-value from the Mann–Whitney test with
two target methods (BSP-VF-1D and BSP-VF-2D).
highlighted regions on the same dataset used by the eight methods
so the participants could easily remember the highlighted regions and
corresponding answers. Also, almost all participants indicated that the
density estimation task was challenging because of two factors. One is
that it was hard for them to find the reference region with the highest
density. The other was that the tick value shown on the colormap
legend was the absolute density value, which cannot be directly used
for estimating a normalized density value in the range [0,1] for task 2.

Such findings led us to create more variations of density plots. Yet,
adding more stimuli would lead to too many trials. To address this
issue, we flipped the density plots either horizontally or vertically to
create variations while maintaining the tasks equivalent; the local struc-
tures were not changed. For the density estimation task, we explicitly
show the highest density region marked by a blue box (see Fig. 7(b))
and normalize the tick value of the colormap legend to [0,1] for all
tasks.

Participants. We recruited 45 participants, yielding a power of 1 at
the effect size Cohen’s f = 0.25 and 70% order effect coverage: 35
males and 10 females, aged 18 to 39, including 32 undergraduates,
11 masters, and 2 Ph.D. in different majors. None have color vision
deficiencies.

Procedure. We used the Touchstone2 [33] tool to design a within-
subject experiment, in which the order of tasks was fixed, and the
methods, datasets, and stimuli were counterbalanced with a Latin
square. This ensures that each participant has a different trial or-
der of all stimuli for each task, which helps avoid systematic errors
and minimize random errors [34]. Each participant went through the
following steps: (i) review a consent page and the task instructions,
followed by completing four training trials, which include the density
plots generated by BSP with 2D colormaps; (ii) complete each trial as
accurately as possible, where each participant was asked to take a 2–
3 min break after finishing each task; and (iii) provide demographic
information. The four training trials were identical to the subsequent
real test. On average, the participants took 35 min to finish all the trials
(min: 25 and max: 45).

We implemented different response mechanisms for the five tasks.
For the density comparison and count outliers tasks, participants clicked a
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letter or number they thought was the correct answer from multiple op-
tions displayed below the visualization, while participants entered their
estimated values in the density estimation task. For the find maximum and
search for pattern tasks, participants clicked the possible position in the
density plot.

Analysis. Following the previous study [2], we did not assume that
the underlying data fits the normality assumption and hence analyzed
the results using 95% confidence intervals. We performed the Mann–
Whitney test for pairwise comparisons between methods to learn if they
have significant differences.

Results. Figs. 8(b)–8(f) show the experimental results for the five tasks,
where two target methods used by the Mann–Whitney test and the p-
values with significant differences are highlighted in bold. The response
time for all methods is similar, and thus, we do not show it.

Fig. 8(b) shows the results of the density comparison experiment.
There is no significant difference between BSP-VF-1D and CDP, SSP-
d, and BSP-GS-*, while the differences between BSP-VF-1D and SSP-s
and SPP are significant. More specifically, we found that BSP-VF-2D
even outperforms CDP and SSP-d. The results overall confirm H1 that
BSP-VF-* is comparable to CDP and SSP-d and performs better than
SSP-s and SPP. Also, BSP-VF-2D performs similarly to BSP-GS-2D and
outperforms BSP-*-1D, indicating that our bivariate colormaps can help
reduce the error in relative density comparison.

Fig. 8(c) shows the results of the density estimation experiment.
BSP-VF-2D and BSP-GS-2D perform similarly and slightly better than
CDP, BSP-*-1D, and SSP-d, followed by SPP, and SPP-s is the worst.
The statistical differences between BSP-VF-2D and SSP and SPP are
highly significant, and BSP-VF-1D is significantly worse than BSP-
GS-2D. The results largely confirm H2, indicating that all BSP-*-2D
methods outperform the other methods in density estimation.

Fig. 8(d) shows the results of the find maximum experiment. BSP-VF-
* perform the best and slightly better than BSP-GS-2D, SSP-d, and CDP,
followed by BSP-GS-1D and SSP-s, and SPP is the worst. The statistical
differences between BSP-VF-2D and all the other methods except BSP-
VF-1D are significant, and the ones between BSP-VF-1D and BSP-GS-1D,
SSP-s, and SSP are significant. The results largely accept H3, indicating
that the variance-aware filter helps for locating the correct maxima.
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Fig. 9. Density plots of the ‘‘UK Road Safety’’ dataset. (a) The BSP generated with default parameters and (b,c) the results of highlighting the area above London (blue box in
(b)) and the northwest area of Scotland (green box in (c)) with a large local 𝜔 (20) for the selected regions.
As for the count outliers task, we observed that BSP-* performs
similarly to SSP-* and is significantly better than CDP and SPP (see
Fig. 8(e)), which confirms H4. For the search for pattern task, all BSP
methods perform similarly and significantly better than the others in
revealing local structures (see Fig. 8(f)). Yet, there is no significant
difference between BSP-VF-* and BSP-GS-* methods, and thus, the
results partially support H5.

In summary, we have the following controlled-study results:
1. BSP performs significantly better than the other methods in

preserving local patterns and is comparable to SSP in revealing
outliers;

2. BSP with the variance-aware filter can better preserve the lo-
cal maximum, and BSP with bivariate colormaps make density
comparison and estimation more accurate;

3. Combining BSP with the variance-aware filter and bivariate
colormaps performs the best for all tasks.

Discussion. From the above results, we can see that all BSP methods
are comparable or better than CDP, SPP, and SSP in preserving relative
data densities, outliers, and local patterns. The only reason is that our
BSP enhancement strategy is more effective than the previous strategies
(see Fig. 2). Although SSP is comparable to BSP in preserving outliers,
it cannot capture the watermark in the detail layer and enhance it.
One reason for the poor performance of SPP is that it is designed for
abstracting the visual complexity of multi-class scatterplots rather than
single-class scatterplots.

The results show that BSP-VF-* only performs significantly better
than the other methods on the find maximum task and performs simi-
larly as BSP-GS-*, SSP-d, and CDP on the density comparison/estimation
tasks. This is unexpected, since we initially thought that the variance-
aware filter could better preserve relative data densities. After carefully
investigating the tasks of density comparison/estimation and find max-
imum, we found that the former is mainly about the estimation of
mean value within a region (50 × 50 px), where humans have a strong
ability in making efficient judgments in scatterplots [35]. For the latter
one, the user needs to identify the maximum within a smaller region
(25 × 25 px), and our variance-aware filter can explicitly preserve
them, especially for the structures with high variances. The results
in Figs. 8(b), 8(c) show that bivariate colormaps facilitate density
comparison and estimation more accurately.
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4.2. Case studies

Using our interactive system, we conducted two case studies on real-
world datasets using our BSPs with the variance-aware filter model and
bivariate colormaps.

UK-Road-Safety. We used the annual road safety data published by
the UK government [36] from 2005 to 2017 and obtained a density
field containing 2,047,256 records, with the geographical locations
(longitude and latitude) mapped to 𝑥 and 𝑦 axes, and the accident
frequency at each location mapped to the density. As Fig. 9(a) shows,
we first generated a density plot with the variance-aware filter and
default parameters, in which most of the relative data densities are
preserved. However, the road structures above London (the blue box)
and low-density regions like the northwest area of Scotland (the green
box) are not shown clearly. To further explore details in these regions,
we set a large weight 𝜔 = 20 for the selected regions. As Figs. 9(b), 9(c)
shows, the road structures in the selected regions are further enhanced
and become clearer, while the contrast of other regions is lowered.

arXiv. arXiv [37] contains abundant scholarly articles in the fields of
physics, mathematics, computer science, etc. We took a snapshot of the
repository and used the UMAP technique [38] to project it into a 2D
scatterplot based on the similarity between document contents [39];
it contains 1,625,064 articles. We first visualized the density field
using BSP with the default parameters. As shown in Fig. 10(a), the
structures of major clusters (e.g., the green box) were not clear, and
almost all pixels were red or green, indicating that the default hue
mapping scheme shown in Fig. 10(b) does not show the absolute
density distributions well. Hence, we adjusted the control points on
the 𝑥-axis of the colormap, spreading more hues ranging in [90, 270] to
the absolute density range [100, 400] (see Fig. 10(d)). As a result, some
interesting structures, like the cross in the green box, became visible in
Fig. 10(c). After further investigating the articles around this cross, we
found that the path from 1⃝ to 4⃝ consisted of articles from Astrophysics
to General Relativity & Quantum Cosmology, while the path from 3⃝ to 2⃝
consisted of articles that also started from Astrophysics but connected to
High Energy Physics. We can therefore speculate about the relationship
between these sub-fields in Physics.
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Fig. 10. Interactive exploration of the arXiv dataset with their corresponding bivariate
colormaps. (a) Our BSP plot generated by the original bivariate colormap (b); and (c)
improved BSP that shows more structures generated by adjusting the bivariate colormap
with more hue in the value range [100, 400] (d).

5. Conclusion & future work

We presented bi-scale density plots (BSP), a new technique to
enhance density plots at the overview level of scatterplots. We first
developed the unified bin–summarize–decompose–combine framework
for enhancing density plots. Then, we took the density variance into
the guided filter model and formulated the variance-aware filter, which
explicitly preserves both the data maxima and relative densities. To
improve the efficiency of density comparison and lookup, we further
adopted a 2D colormap strategy using the hue and lightness channels
to encode the absolute densities and improved densities. We evaluated
the approach through a controlled user study, which demonstrates
that our BSPs help better preserve the relative data densities, maxima,
outliers, and local patterns. Also, we developed a web-based tool that
implements our approach and demonstrated its effectiveness for the
interactive exploration with two case studies.

There are still some limitations in our technique. First, our de-
fault parameters and 2D colormaps cannot reveal all the important
structures, as shown in Section 4.2. We plan to infer better default
parameters based on density distributions automatically. Second, our
controlled study tested two state-of-the-art density enhancement meth-
ods: Splatterplots (SPP) and Sunspot plots (SSP). This choice was
made to mitigate fatigue in participants. Whether other density plot
improvement techniques (e.g., shaded SSP [2]) would lead to similar
results remains to be seen. Third, the bivariate colormap limits us to
single-class scatterplots; however, our framework with the variance-
aware filter can be easily extended for multi-class scatterplots. Also, our
framework is not limited to the Gaussian filter and guided filter. We
will explore the possibility of adopting state-of-the-art learning-based
filters such as [40].
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